
Please note:

If you experience some difficulty in viewing some
of the pages, use the magnifying tool to enlarge the

specific section

November 22, 1994

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

Law
re

nce

Liver
m

ore

Nati
onal

Lab
ora

to
ry

3D Mesh Optimization Methods for Unstructured Polyhedra:
A Progress Report

Douglas S. Miller
Donald E. Burton

UCRL-JC-119206
PREPRINT

This paper was prepared for submittal to the
Eighth Nuclear Explosives Code Developers' Conference (NECDC)

Las Vegas, NV
October 25-28, 1994

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

3D Mesh Optimization Methods for

Unstructured Polyhedra:

A Progress Report

Douglas S. Miller, Donald E. Burton

Lawrence Livermore National Laboratory

Abstract

A mesh optimization scheme allows a Lagrangian code to run problems with ex-
treme mesh distortion by recon�guring node and zone connectivity as the problem
evolves. We have developed some 3D mesh optimization operations and criteria for
applying them. These are demonstrated in a 3D Free Lagrange code being devel-
oped at LLNL. In the simplest case of a mesh or mesh subregion composed purely
of tetrahedra we can maintain a Delaunay tetrahedralization. For more interesting
meshes, made up of general polyhedra, a suite of optimization operations and their
respective application criteria have been developed.

Introduction

We are designing mesh optimization methods for a
three-dimensional free-Lagrange hydrodynamics
code. The advantage to the free-Lagrange method is
that the mesh can be re-de�ned at will, which allows
free-Lagrange codes to run problems that cannot be
handled by a purely Lagrangian approach. We are
developing a mesh optimization capability that will
allow us to maintain a \good" mesh even in the case
of extremely distorted ows. The work described
here is being done in a code currently under
development at Livermore. We are building a three
dimensional, free-Lagrange hydrodynamics code
that uses arbitrary polyhedra for zones. It uses a
�nite volume approach to compute solutions to the
hydrodynamics equations [1]. This project is
nowhere near completion, but we do have some
early results to report.

Mesh optimization has three goals. First,
tangled meshes must be avoided or repaired. For
example, hourglassing can drive the timestep to zero
or even turn a zone inside out. An optimization
package should recognize that the zone is developing
a problem and do something about it. Second,
resolution can be increased where it is needed. More
points can be added around areas of interest, e.g., a
shock wave, a material interface, or a small feature
in a large problem (a bolt in an I-beam, for
example). The third goal is to reduce unnecessary

computational e�ort lowering resolution in regions
that do not need it.

The problem of de�ning a \good" mesh for a
given problem has no unique solution. Several
algorithms exist [6, 7] for de�ning a mesh but
computing a new mesh for an entire problem by
these methods is too computationally expensive to
do frequently. Instead we have chosen to allow the
mesh to ow with the uid in a purely Lagrangian
way until one or more zones becomes \bad" (we will
de�ne \bad" later). We then focus our attention on
repairing the bad zones and the surrounding region.

Short Term Optimization Plan

We have two immediate mesh optimization goals; to
change the connectivity of nodes of that make up
bad zones so that we end up with a better mesh and
to re�ne regions that need improved resolution.
Later we will add the counterpart of re�nement,
coarsening the mesh.

When zones become bad, our current strategy is
to decompose them into two or more tetrahedra. A
tetrahedron, or \tet", is the simplest possible 3D
zone. Dealing with bad tets is much easier than
trying to handle the general case of a bad arbitrary
polyhedron. The tetrahedra in a mesh are then
reconnected such that all the tetrahedra are locally
Delaunay[3] (which we will de�ne below).

To improve resolution we have three mesh
operations; add a point to a zone, add a point to a
face, and add a point to an edge. The last two
operations are currently de�ned for faces and edges
that are common to tetrahedral zones only. It is
possible to de�ne these operations on arbitrary
polyhedra but it is unclear how to do this in a way
that gives predictable and useful results. Currently
we use maximum volume and area criteria for our
zone and face re�nement operations. Edge
re�nement is controlled by both maximum length
and aspect ratio criteria.

Operations

In this section we will discuss the details of our
various mesh operations.

Tetrahedral Decomposition

Tetrahedral decomposition reduces a polyhedron to
a collection of tets. This would be trivial if we
added a point to the center of the zone to be
decomposed, but that would add resolution and
needlessly decrease the timestep. Instead, we want
an algorithm that uses only the points that already
make up the zone to be decomposed.

One might at �rst imagine that it would su�ce
to design a method that decomposes a small set of
polyhedra (for example, hexahedra, prisms, and
pyramids) but this is not so. Consider two adjacent
hexahedra. Once a hexahedron, or \hex", has been
decomposed, its faces are split into triangles and its
neighbor now has seven faces, not six|the neighbor
is no longer a hex at all but a seven sided
polyhedron. A more general method is required.

Tetrahedral decomposition is accomplished with
the following algorithm.

Make_Bad_Zone_List

(1) Triangulate_Faces_of_Bad_Zones

for each (Zone in Bad_Zone_List) do

while (number_faces_in_zone > 4) do

(2) Make_Point_to_Point_Chart

(3) Try_to_Find_a_Tet

if (tet_is_found) then

Split_Tet_from_Zone

else

(4) Flip_a_Face_Triangle_Pair

endif

endwhile

endfor

The steps that need some explanation are
numbered.

1

2
3

4

5

6 7

8

Figure 1: The faces of this zone have been split into
triangles, in preparation for decomposing it into tet-
rahedra. The chart that represents this zone is shown
below.

Split Faces of Bad Zones into Triangles

examines each face of a zone and splits any face
consisting of more than three points into triangles.
In theory it is usually possible to split the faces such
that tetrahedralization of the zone is trivial
afterwards, but we have not found an inexpensive
way to calculate the correct splitting in advance. It
is simpler to just split the faces arbitrarily and
adjust afterwards.

Once the faces are split into triangles, we can
begin to look for tets. We make a chart of the
connections between points. See Figure 1. This hex
has been triangulated and the resulting chart is
shown below. A one means \is connected", a zero
means \is not connected".

1 2 3 4 5 6 7 8

1 0 1 0 1 1 0 0 0

2 1 0 1 1 1 1 0 0

3 0 1 0 1 0 1 1 0

4 1 1 1 0 1 0 1 1

5 1 1 0 1 0 1 0 1

6 0 1 1 0 1 0 1 1

7 0 0 1 1 0 1 0 1

8 0 0 0 1 1 1 1 0

Step (3), Try to Find a Tet, is accomplished by
examining this chart. For each row, we take the set
of connected points and look for \rings". We de�ne
a ring to be three points that are all mutually
connected. For example, in row 1, we have the set
f2; 4; 5g. Let the symbol $ mean \is connected to".

2

From the chart, 2$ 4, 4$ 5, and 5$ 2, hence
these points make a ring. Point 1 is connected to
every point in the ring (1$ f2; 4; 5g), so point 1
and the set f2; 4; 5g form a tetrahedron. Having
found a tet, we pop the tet f1; 2; 4; 5g o� the zone,
create an updated chart of the zone and repeat this
operation again.

It can happen that a point is not connected to
any rings. In the chart above, point 3 is connected
to the set f2; 4; 6; 7g. None of the triplets in this set
(f2; 4; 6g, f2; 4; 7g, f2; 6; 7g, f4; 6; 7g) are rings. If
none of the points in the chart are connected to a
ring, then we look for the next best thing; a
\near-ring", in which one connection is missing. In
our example hex, f4; 2; 6g is a near-ring; 4$ 2,
2$ 6, but 6 6$ 4. This would show up when we
examine point 5 because 5$ f4; 2; 6g. Assuming we
had already searched the table for a ring without
success, then having found the near-ring, we would
go ahead and force the connection 6$ 4. Then we
pop the new tet, f5; 4; 2; 6g, o� the zone. In practice
we limit the number of new connections like this to
one per zone, although for zones made up of many
faces (greater than �fteen or twenty triangular faces,
say) more than one new connection might be
helpful. Limiting ourselves to just one new
connection per zone eliminates the need to ensure
that newly connected tets do not intersect each
other. If we ever do calculations that develop such
many-sided zones, it will be straightforward to add
a tet intersection check and make more than one
new connection during a decomposition.

As a practical measure, some tets generated by
our decomposition algorithm have to be tested for
small or zero volumes lest the new connection
algorithm in step (3) create logical tetrahedra that
are degenerate (all the points lie in a plane, e.g.
f1; 2; 3; 4g) or \wafer thin". We test that the sine of
the angle between two zone faces that will be part of
the new tet created by a new connection is at least
0.2. This prevents tets that have extremely small,
zero, or (even worse) negative volume from forming.

Even having made a new connection through
the interior of a zone, it can happen that there are
no tets to be found. This situation can arise
immediately after the faces have been split into
triangles or after several tetrahedra have been
removed from the original zone. A common instance
is the \evil prism", shown in Figure 2a. The only
way out of this problem is to ip one or more of the
triangular face pairs. Once such a ip is made, the
algorithm can continue. Here we have ipped 5$ 2
to 1$ 6, and the prism immediately falls apart into
the tets f1; 4; 6; 5g, f1; 6; 3; 2g, f1; 6; 4; 3g.

1

2

3

4 5

6 6

5

1

4

3

2

Figure 2: (a) an un-tetrahedralizable prism, (b) after
a face pair ip this prism decomposes immediately
into three tets

Delaunay Tetrahedralization

Once a region of the mesh has been broken into tets,
we reconnect the tets such that all \interior tet
faces" are locally Delaunay. An \interior tet face" is
a face that is common to two adjacent tets. The
criterion for being locally Delaunay is that the
circumsphere of one tet does not enclose the other.
The process of how to make any tetrahedral mesh
Delaunay is described in detail by others[5, 4]. In
brief, three tetrahedral ips are necessary.

Given two adjacent, non-Delaunay tets
fa; b; c; dg and fa; b; c; eg that form a convex hull,
the two tets are reconnected into three; fa; c; d; eg,
fa; b; d; eg, and fb; c; d; eg. This is called the \two to
three ip".

For the case that fa; b; c; dg and fa; b; c; eg do
not form a convex hull, one must check to see if a
third tet exists that combined with the �rst two
completes a convex hull. Assume (given the two tets
fa; b; c; dg and fa; b; c; eg) that the fa; b; dg and
fa; b; eg faces form a concave surface and the tet
fa; b; d; eg exists. Then the three tets fa; b; c; dg,
fa; b; c; eg and fa; b; d; eg are transformed to the two
tetrahedra fa; c; d; eg and fb; c; d; eg. This is the
\three to two ip".

One more ip is necessary to handle degenerate
situations. Consider four tets fa; c; d; fg, fb; c; d; fg,
fa; c; f; eg, and fb; c; e; fg. The four to four ip is
used to �x the case of fa; b; c; fg being co-planar
points. Essentially, the fc; fg connection is replaced
by fa; bg, to give four new tets fa; b; c; dg,
fa; b; d; fg, fa; b; c; eg, and fa; b; e; fg. A \two to

3

two" version of the four to four ip is necessary to
maintain good surface triangulation; it is identical
to the four to four ip but only the tets fa; c; d; fg
and fb; c; d; fg are involved and the faces fa; c; fg
and fb; c; fg must lie on a surface boundary of the
mesh region.

Provided that the Delaunay algorithm operates
by means of local transformations (ips), it is simple
to modify a Delaunay tetrahedralization algorithm
to work in a heterogeneous mesh (a mesh composed
of more zone types than just tetrahedra). Instead of
examining all the faces in the mesh for the Delaunay
criterion, only the faces that are common to two
tetrahedra are considered. The result is a method
which allows a mesh of arbitrary types of polyhedra
but keeps the tetrahedral regions of the mesh
Delaunay.

Re�nement

After eliminating tangled zones, the next most
important feature of mesh optimization is the
ability to re�ne the mesh in selected regions. We
can increase resolution by adding more zones, edges
or points, depending on the kind of resolution we
want to improve (this is a one way street; zones can
be added without adding new edges or points but to
add a new point one must necessarily add new edges
and faces). Although this �ne level of control is
interesting to consider, in practice it is not clear
that signi�cantly better accuracy can be obtained
by splitting zones without adding points, since in a
staggered grid hydrodynamics scheme (which is our
current method) the momentum control volume is
centered on the points, not the zone center. The
momentum control volume might change shape as
zones are fragmented, but it will not get
signi�cantly smaller unless additional points are
added. As a result, we have only implemented
re�nement operations that add points to the mesh.

We have implemented three zone splitting
re�nement options; edge-centered, face-centered,
and zone-centered. Edge and face-centered zone
splits are de�ned only for tetrahedra, zone-centered
splitting is de�ned for all convex zones.

In a zone-centered zone split operation, a new
point is added to the center of the zone to be split.
A pyramid is constructed from each face and the
zone center point (e.g., for a cube one would obtain
six square pyramids, whereas a triangular prism
would yield three square pyramids and two
tetrahedra).

Face-centered splits are done only on tetrahedra
because higher order polyhedra would become
concave under this operation. Consider a tet,

fa; b; c; dg. A point e is added to the center of the
face fa; b; cg. The face is split by the new edges
fa; eg, fb; eg, and fc; dg, and the connection fd; eg is
made so that in the end we have three new tets,
fa; b; e; dg, fb; e; c; dg, and fc; e; a; dg.

Edge-centered zone splits are also de�ned only
on tetrahedra. Consider once again a tet, fa; b; c; dg.
A point e is added to the center of the edge fa; bg.
The original tet is split into two new ones, fa; e; c; dg
and fb; c; e; dg. The edge split is especially useful for
maintaining good tet aspect ratios.

Criteria

Teaching a computer when and how to modify a
mesh during a time dependent problem is still best
described as a \dark art". Our current approach is
to try to maintain aspect ratios as close to unity as
we can, and to keep a set level of resolution by
keeping zone volumes, face areas, and edge lengths
all within user prescribed limits.

For many problems the best mesh for
�nite-di�erence and �nite volume techniques is
orthogonal and evenly spaced, hence one measure of
zone quality is how far from being orthogonal the
faces of the zone are. We measure this by �nding
the angle between a vector normal to a face and a
vector de�ned by the zone center and the face
center. When this angle is larger than a user de�ned
maximum, we perform a tetrahedral decomposition
on the zone.

The Delaunay criterion for the tetrahedral
regions of the mesh yields a good tet mesh for the
most part but it also allows some \wafer thin" tets
at the boundaries of the tet regions. A criterion to
detect these and an operation to eliminate them
must be added to our package.

Examples

Figure 3 shows our current optimization package
operating on a 5x5x5 hexahedral mesh to which has
been applied a Coggeshall velocity �eld. The
velocity u of a point is given (in spherical
coordinates r; �; �) by [2]

ur =
r

2(t� 1)
(1)

u� = 0 (2)

u� =
r

(t� 1)

s
4

�
 � 1

�
sin3 � +

1

12
(3)

where t is the time and = 5=3. Note that as the
hex zones become distorted they are broken into

4

tetrahedra. Once created, the tetrahedra maintain
the Delaunay relation. Re�nement was turned o�
for this test, so no new points are added even when
the zones become large and extremely distorted.

Our second example is an analytic velocity �eld
that emulates the uid motion of an unstable
boundary layer applied to the same 5x5x5
hexahedral grid as above. In Figure 4 face
re�nement only takes place within the mesh. It is
easy to see the need for edge re�nement as the zone
aspect ratios become large.

Future Work

Our mesh optimization package is far from �nished.
Much research remains to be done to correctly
match control criteria with mesh operations. In the
future we will examine the e�ects of adding
information about the current solution to the mesh
optimization routines. Additional mesh operations
will be added. A zone merge operation to combine
and eliminate \wafer thin" tetrahedra is necessary.
More re�nement and reconnection operations on
non-tetrahedral zones are needed if we are to move
beyond our current strategy of tet decomposition
when zones develop undesirable shapes.

Acknowledgments

We would like to gratefully acknowledge the advice
and support of Dave Lappa and Todd Palmer, both
of LLNL, in this e�ort. This work was performed
under the auspices of the U.S. Department of
Energy, by Lawrence Livermore National
Laboratory under Contract #W-7405-Eng-48.

References

[1] D.E. Burton. Multidimensional discretization
of conservation laws for unstructured polyhe-
dral grids. Technical Report UCRL-JC-118036,
Lawrence Livermore National Laboratory, August
1994.

[2] S.V. Coggeshall and J. Meyertervehn. Group-
invariant solutions and optimal systems for mul-
tidimensional hydrodynamics. Journal of Mathe-

matical Physics, 33(10):3585{3601, Oct 1992.

[3] B. Delaunay. Izv. Akad. Nauk. SSSR Math and

Nat. Sci. Div., 6(793), 1934.

[4] Dan Fraser. Tetrahedral meshing considera-
tions for a three-dimensional free-lagrangian code.

Technical Report LA-UR-88-3707, Los Alamos
National Laboratory, 1988.

[5] Barry Joe. Three-dimensional triangulations from
local transformations. SIAM J. Sci. Stat. Com-

put., 10(4):718{741, July 1989.

[6] Joe F. Thompson, Z.U.A. Warsi, and Wayne C.
Martin. Numerical Grid Generation. North Hol-
land, New York, 1985.

[7] N.P. Weatherill and G. Hassan. E�cient three-
dimensional delaunay triangulation with auto-
matic point creation and imposed boundary con-
straints. International Journal for Numerical

Methods in Engineering, 37:2005{2039, 1994.

5

(e)

(d)

(c)

(b)

(a)

Figure 3: Coggeshall velocity �eld applied to a 5x5x5
hex mesh at times (a) 0.0, (b) 0.5, (c) 0.7, (d) 0.8,
and (e) 0.9

(d)

(c)

(b)

(a)

Figure 4: Instability velocity �eld applied to a 5x5x5
hex mesh at times (a) 0.0, (b) 0.6, (c) 1.2, (d) 1.2,
side view

6

